
MATHEMATICS OF COMPUTATION 
VOLUME 54, NUMBER 189 
JANUARY 1990, PAGES 313-330 

ACCURATE CALCULATION OF FUNCTIONS USED IN A MODEL 
OF THE NEMATIC BEHAVIOR OF SELF-ASSEMBLING SYSTEMS 

ALAN E. BERGER 

ABSTRACT. An algorithm used to evaluate double sums arising in a model de- 
scribing the nematic phase behavior of surfactant solutions is demonstrated to 
yield approximations accurate to within a tenth of a percent. When direct sum- 
mation would converge slowly, an asymptotic result is employed based on a 
double application of the Euler-Maclaurin sum formula. 

1. INTRODUCTION 

A model formulated by Herzfeld [3] provides a description of the liquid crys- 
talline phase behavior of various protein and surfactant solutions. This model 
uses a lattice description of excluded volume effects and a phenomenological 
description of the reversible assembly of amphiphilic molecules into rod-like 
and plate-like aggregates of arbitrary size, which spontaneously align at suffi- 
ciently high concentrations. The predicted state of the system is the one which 
minimizes the free energy functional derived from the model. Locating this 
minimum when plate-like aggregates are present requires evaluation of the fol- 
lowing four functions for O < P, Y, Q < 1 (F P Y and Q may be very close 
to 1): 

00 00 

(1.la) G(P, J, Q) = E Z pmynQmn 
m=O n=O 

(l. lb) GI (P 5, Q) = E E mpmnQmn 
m n 

(1.IC) G2(P, ?, Q) =Z1flP: p n Q mn G1(Y5 F, Q) 
m n 

(1.Id) G3(P, ?, Q) = mnPmn?AyQmn 
m n 

cf. [3, 5, 6]. Here and below, summations whose limits are unspecified are un- 
derstood to run from 0 to ox. An algorithm developed by Berger and Herzfeld 
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for evaluating the functions in (1.1) is given in [6] and has been used to study 
the phase behavior of surfactant solutions [5, 6]. 

In this paper we demonstrate that the overall algorithm, assuming exact 
arithmetic, gives values for G, GI , G2 and G3 with relative error (error/exact 
value) bounded by 1/1000 . While the analysis below assumes infinite precision 
arithmetic, the algorithm itself incorporates asymptotic expansions for certain 
expressions involving the exponential integral function Ei(z) when cancellation 
of terms might otherwise cause serious loss of accuracy. We next display Table 
1 to indicate the sensitivity of the values of the G functions to small changes 
in PF and Q. 

TABLE 1. Some values of the G functions. 
P Y Q G GI G2 G3 

.999 9 .999 9 .999 999 999 9.16 E7 8.44 E l1 8.44 El 1 7.20 E15 

.999 9 .999 9 1 10.0 E7 10.O El 1 1O.OEl I 0.0 E15 

.999 9 .999 999 .999 999 999 2.02 E9 7.98 E12 7.99 E14 1.22 E18 

.9999 .999999 1 1O.0E9 100.E12 100.E14 100.E18 

In ?2 we give a complete description of the algorithm, in preparation for the 
proof of accuracy which then follows. 

2. ALGORITHM FOR EVALUATING (1.1) 

Let 0 < PF 9, Q < 1 . If either P or 39 is less than .64, or Q is smaller 
than .95, a direct partial summation is used to determine the functions in (1.1). 
Otherwise, a double application of the Euler-Maclaurin summation formula is 
employed. For direct partial summation, it is useful to rearrange the sums in 
(1.1) into the "herringbone pattern" E, T7, where T7 designates the sum over 
the pairs (mi, n) in the half-line at and to the right of (I, 1) and in the half-line 
above (I, 1); e.g., for a given nonnegative integer L, 

L 

(2. 1a) G(P, 5 Y Q) E EH(P, 5 Y Q.5 l) +E(P5 -95 Q.5 L), 
1=0 

where 
00 002 

H(P Y, Q, 1) E pnAlQfnl + E plA nQ'In - 
II 
WQ 

(2. ib) tn=l n=I 

PI7 "2Q[( -PQ)-1 ?(1 - Q1) - 1], 

00 0.0 

(2. 1c) E(P, 5 Y Q.5 L) =P E p7nQzn 
tn=L+l n=L+l 

Similar expressions are valid for GI, H1, and El, i = 1, 2, 3. Recall that 
by differentiating El z' = (1 - z) I and then multiplying by z, one has 

>2 iz' = z(1 - Z) 2 (further iterations of this procedure are used below), and 
so the H1 can be easily evaluated in closed form. 
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The approximate value for G is the first term on the right side of (2. la). We 
next indicate how to choose L so that E will be as small as required. Define 

K K K 2 

(2.2) K = L + , p = p(L) = PK9K Q 
and observe that 

00 CIO 

E(P, 3, Q, L) = > 
, 

(pQK)m-K(g/QK)n-KQ(m-K)(n-K) 

(2.3) m=K n=K 

p (pC ) (yQ ) QJ = pG(PQ ,QK , Q) 
i j 

Since G is an increasing function of P, 9 and Q, G(PQ , 
K 'Q , Q) < 

G(P, 3 , Q), and so the relative error E(P, 39, Q, L)/G(P, S, Q) is bound- 
ed by p. For P < .64 or 37 < .64 or Q < .95, this may be made quite small 
(e.g., smaller than 1/1000) without having to take L very large. Note that 
p(l) occurs in H(P, Y, Q, / + 1), so there is essentially no additional cost in 
computing the current value of p as I is successively increased until p satisfies 
a given stopping criterion. 

In similar fashion one has 
L 

24) G,(P, Y, Q) = E Hi(P, Y, Q. I) + KpG(PQ , yQK, Q) 
/=0 

?pG1(PQK ,QK ,Q) for i = 1, 2. 

To evaluate G1 (P. , Q), we initially calculate the value of the first term on 
the right side of (2.4), with L the first integer for which p is less than or equal 
to half of whatever relative error tolerance T > 0 is prescribed. The value of the 
second term on the right side of (2.4) is then added in, with G(PQ 

K 
yQK, Q) 

calculated to within a relative error of T/2 as described above. The same 
procedure is used for G2. Finally, for G3 one has 

L 

G3(P,1 A, Q) = EH3(P, I, Q, I) + K pG(PQ , Q , Q) 
(2.5) 1=0 K K 

+ KpGI (PQ , Q , Q) + KpG2(PQK, yQ , Q) 

+ pG3(PQK IQK ,Q). 
To compute G3 using (2.5), L is the first integer for which p < T/2, and then 
G GG1 and G2 at (pQK, y?QK, Q) are obtained to within a relative error of 
T/2 as described above. 

As P, 9Y and Q all approach 1, these "herringbone" sums require an in- 
creasingly large number of terms. Therefore, when 

(2.6) P > .64, 3 > .64 and Q> .95, 

we employ the Euler-Maclaurin summation formula (with 3 correction terms) 
as described below. The selection of the constants .64 and .95 in (2.6) (while 
somewhat arbitrary) was guided by the error analysis which follows. 
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2.1. Use of the Euler-Maclaurin formula. When (2.6) obtains, we will make 
repeated use of the summation formula 

(2.7) Zf(k) =/ f(s) ds + 2 1 + 720 

where f(s) is any "well-behaved" function on [0, ox) and P denotes the re- 
mainder term, see, e.g., [4]. Analysis of the remainder terms when using (2.7) 
to evaluate (I 1) (confirmed by numerical experiments) indicates that in general 
it is essential to arrange to apply (2.7) to (1.1) only at points (PF 37, Q) with 

(2.8) In Ql In P < 1/4 and In Q/1in 7 < 1/4. 

This is easily accomplished by always doing preliminary herringbone sums with 
L = 3 (K L + 1 = 4) and using equations (2.1), (2.3), (2.4) and (2.5) 
to reduce evaluation of G, GI, G2 and G3 at (P. ,? Q) to evaluation at 
(P, , Q) = (PQ4, Q4, Q) for which (2.8) is obviously valid. If either 
PQ4 or 3Q4 is less than .64, herringbone sums are used to obtain the G 
functions at (P. 5, Q), otherwise (2.7) is employed, as we now describe. For 
simplicity in the notation, we drop the tilde over P and Y when it should 
be clear from the context whether the original (PF 5, Q) point or (P. , Q) 
is under consideration (in particular it is to be understood that (2.7) is only 
applied to (P. 5, Q) ). 

Assume (2.6) and (2.8) are valid, and use the convention that sums and 
integrals whose limits are unspecified are understood to run from 0 to 00. To 
determine G(P, 9, Q) using the Euler-Maclaurin formula, define 

(2.9) f(x, Y) = pXJYQXy = exp(x In P + y ln + xy In Q) 

and apply (2.7) to f considered as a function of x, obtaining 

P. Z i Q = Jf(x ,y) dx +?Y/2 - (lnP +ylnQ)>?Y/12 
(2. 10) m 

+ (In P + y In Q)3 /720 + r(y) for y > 0. 

Bounds on the remainder r are obtained in the next section. Now sum both 
sides of (2.10) over y = 0, 1, 2,... and get 

(2.11) G(P,JY, Q) -, f(x, n)dx + A?+r(n), 
n n 

where A denotes terms which are evaluated in closed form after straightforward 
albeit lengthy algebra. Since f (x, y) > 0 and the relevant series and integrals 
are convergent, we have 

(2.12) Zf f(x, n)dx =Jf(x, n)dx. 
n ~~~~~~~n 
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Now apply (2.7) to the right side of (2.12) to find 

Zf (x, n) dx= ff(x, y) dy dx 

(2.13) +f [f(x, 0)/2-fy(x, 0)/12+fyyy(x, 0)/720] dx 

+ s(x)dx, 

where s is the remainder term. Let 

(2.14) I(P, 9,Q) - | f(x, y) dydx, 

and let B denote the second summand on the right side of (2.13), which is 
evaluated in closed form. We then have 

(2.15) G(P, , Q) = I +A + B + E r(n) + s(x) dx. 
n 

We approximate G by I + A + B (the calculation of I is described immediately 
below), and in the next section we show that the remainder terms in (2.15)'lead 
to a relative error of at most 1/1000. 

The same approach leads to 

(2.16) GI(P, 5, Q) = I, +?Al +B, +r,(n) +fs,(x)dx for i = 1, 2, 3 
n 

with the notation corresponding to that in (2.15) (A1 and B1 are evaluated in 
closed form and r1 and s1 are remainder terms) and where 

II(P, 9, Q) _fxf(x, y)dxdy = PIp(P, , Q), 

(2.17) I2(P 5 9 Q) -|yf(x y) dxdy -,YIy (P Y,7 Q) 

I3(P, 9, Q) f xyf(x~ y)dxdy = QIQ(P, , Q), 

with f as in (2.9) and with Ip denoting the partial derivative of I with re- 
spect to P etc. The last equality in each line of (2.17) is justified by taking 
difference quotients approximating IP, I~ , IQ and using the mean value the- 
orem and then the Lebesgue dominated convergence theorem. The complete 
algebraic expressions for A + B, AI + B1, and A3 + B3 are given in the Ap- 
pendix and in the listing of the computer program SUM2D (available from the 
author) which implements the algorithm for evaluating G, GI, G2 and G3. 
In the program, when (2.16) is being applied, G2(P, 5, Q) = GI (37, PF Q) 
is actually obtained by calculating the approximate value of GI (Y, FP Q) via 
(2.16). 
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2.2. Evaluation of I, Il. I2 and I3. We have 

I(P, -D, Q) = fexp(y In a) 4fexp[(ln P + y In Q)x] dx} dy 
(2.18) y x 

- f (lnP+ylnQ) exp(yln5)dy. 

Now set 

(2.19) A = lnPln-/lnQ 

and use the change of variables s = A + y ln in (2.18) to find 

(2.20) I(P, q, Q) = 
f 

(e i/In Q)e sf ds 

= (eA / In Q)Ei(A) = AeA iEi(A)/(lnPln-5), 
where 

(2.21) Ei(z)=f tlexp(t)dt for z<0 

is the exponential integral function (cf. formula 8.211 of [2], and page 228 of 
[1] where El(w) = -Ei(-w) for w > 0). From (2.20) and (2.17) we have 

1I(P, i?, Q) = {-I(P, i?, Q)ln 5? 1/InP}/ lInQ, 
(2.22) I2(P, 9, Q) = {-I(P, -, Q)InP + ?1/ln-} / InQ, 

I3 (P I 9~ Q) = MPI(P -9, Q)A - I(P, -5, Q) - I/In Q / In Q. 
For -1 < A < 0, the formula 5.1.53 on page 231 of [1] is used to obtain 
Ei(A) and thereafter I, Il. I2 and I3 . For -59 < A < -I formula 5.1.56 of 
[1] is used to evaluate Aexp(-A)Ei(A) and thereby I, Il. I2 and I3 (Ei(A) 
and exp(-A)Ei(A) may be obtained using a special function library routine, if 
available, e.g., MMDEI in IMSL). In order to avoid serious loss of significant 
digits from cancellation of terms in (2.22) (particularly in I3 ) as -A becomes 
large, for A < -59 we use the asymptotic expansion for A exp(-A)Ei(A) coming 
from formula 8.215 of [2] (note there the exp(-x) factor also is to apply to 
Rn), viz. 

(2.23) Ae Ei(A) = - - + En where IE n!/Hl. 
k=O 

From (2.23), (2.20) and (2.22) one can obtain the following approximations to 
be used for A < -59 (cf. ?3.6): 

I (P 5 9D Q) --(I1 + IIA + 2/A2 + 6 A3 )/(In P InY) , 

II (P 5 Y 5 Q) ---D/[(ln p)2 InY, 3 

(2.24) where D _ - 1 - 2/A - 6/A - 24/A3 

I2(P,5 Y Q) -+D/[A+ /A +6 )(lnn P]i, 

I3(P5 
, 

Q) I--(I + 4/A + 18 /A2 + 96/A3 )/ (In P In y 
)2 
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In the next section we prove 

Theorem 2.1. The algorithm described in this section (with T = 1/1000 when 
herringbone sums are used) gives values for G, G1, G2 and G3 with relative 
error (error/exact value) no larger than 1 /1000. 

It should be pointed out that the above result assumes there is no round-off 
error in the calculations. The expansions in (2.24) deal with the situation where 
it was seen that finite precision arithmetic threatened to introduce significant 
errors. Note, however, that we are not claiming to treat all the limitations of 
finite machine precision. In particular, there would be computational difficul- 
ties if the arithmetic z = 1 - P, or z = 1 - 3, or z = 1 - Q loses "too 
many" significant digits. Error estimates which are sharper than those stated in 
Theorem 2.1 are given in Lemma 3.5 in ?3.3, and in ?3.5. 

Values of G, GI, G2 and G3 from SUM2D on test cases with P > .64, 
3 > .64, Q > .95 were consistent to within 0. 1% with those obtained by "brute 
force" use of the herringbone sum option (with z = 1/10000 ) in SUM2D. 

3. PROOF OF THEOREM 2.1 

We demonstrate the accuracy claimed in Theorem 2.1 by obtaining bounds 
for: the remainder terms in the Euler-Maclaurin summations, the errors in the 
approximations used for the exponential integral function, and the errors in the 
asymptotic expansions used for I, II, I2 and I3 when A < -59. We first 
give a bound (suitable for our specific applications) for the remainder term in 
the form of the Euler-Maclaurin sum formula given in (2.7). 

3.1. A Bound for the remainder in (2.7). We will be using (2.7) with f (s) of the 
form e or se with a some negative constant. The following result, which 
follows directly from, e.g., pages 177-179 of [4], will serve our requirements. 

Lemma 3.1. Assume f(s) is in C6 [0, oo), the sum and integral in (2.7) are 
absolutely convergent, f(i)(s) -- 0 as s -x oo for i = 1 and 3, and f z6)(s) E 

L1 (0 oo) Then the remainder term P in (2.7) is bounded by 

~i~2B6 (0) j00 Jk6) 
(3.1) 6! f(6)(\ ds 

where B6(x) is the sixth Bernoulli polynomial (B6(0) = 1/42). 

Proof. See problem 22 on page 179 of [4], let m = 2, note from problems 19 
and 20 that IB6(s) - B6(0)I < 2B6(0), and then let r-- oo. o 

As an immediate consequence one has 

Corollary 3.2. Suppose, in addition to the hypotheses of Lemma 3.1, f satisfies 

(3.2) j f6 (s) ds < Cs f(5) (0) 

Then 

(3 6_() f(5) 
f(5) (0) 

(3.3) IiJ ? 2C5 136(0 f5(0) - 2 C504 
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If f(s) = eas, then f(6) has one sign on [0, oc) and C5 in (3.2) is 1 (in 
this case a sharper bound for JI1 is available, cf. [4, p. 154], but we will not 
require it here). We also have 

Remark 3.3. If f(s) = seas with a some negative constant, then (3.2) is valid 
when 

-6 
(3.4) C5 = K51? + 5 
Proof. One may verify by induction that 

(3.5) f (s) = (a's + ka- l)e for k = O.1, 

and so 

(3.6) f(6) (s) = 0 only at the point p = -6/a. 

Then 
f00 f6(s) d Pff(6)( )d f f 

f(s)ds=, - (P) (3.7) s)d sds+ (6) f(5)-(0 

from which the result quickly follows. E 

For future use, we define 

(3.8a) K5= 5K5=5+2e 

and note that when f(s) = s exp(as), 

(3.8b) K 5 f(5) (0) = K 5a. 

We are now in a position to estimate the remainder terms in (2.15) and (2.16). 

3.2. Bounds on the Euler-Maclaurin remainders in (2.15) and (2.16). We first 
treat the remainder terms for G(P, Y, Q). Recalling the notation in (2.9), 
(2.10), (2.13) and (2.15), and Corollary 3.2 and the sentence below it, we have 

(3.9a) jr(n)l < 21 ln P + n ln QJ5 J /30240 for n = 0, 1, 2,... 

(3.9b) Is(x)I < 2Iln9+xlnQI5exlnP/30240 forx > 0. 

For convenience, we introduce the notation 

(3.9c) 6 = 1/30240. 

We next calculate a bound for f Is(x)I dx, making use of the formula 

(3.10) kea dx = (-l)k+ k!/k for a < O and k = 0, 1, 2, .... 

see, e.g., 4.2.55 in [1]. From (2.6), 9 > .64, so Iln391 < 1/2, and setting 
c = ln Q/ ln P, we have 

fls(x)I dx < 2f (1/2 + xI ln QI)5ex In P dx 

2 3 4 5 
=26(1/32 +5c/ 16+ 5C /2 +15C +60C4 +1I20C51 I/JnPI. 
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From (2.8), c < 1/4, and noting that 

00 

(3.12) lnzJ = Z(l - z) /n > 1 - z for 0 < z < 1, 
n=1 

we obtain 

(3.13) fIs(x)I dx < 25(54.5/64)/l InPI < 25/(l - P) < 26G(P, 9, Q), 

with the last inequality following from (2.1) with L = 0. 
We next provide a bound for En Jr(n)J by dominating this sum with an 

integral. For each positive integer n, Jr(n)J is bounded by 

(3.14a) 261 JlnP+nlnQ5 9n dyi<?26 lnP+lnQ+ylnQJ5 9y dy, 

since the inequality is valid for the integrands when n - 1 < y < n. Recalling 
(2.6) and the resulting fact that I ln PJ + I ln QJ < .44629 + .05130 < 1/2, (3.1 4a) 
implies 

00 

S Ir(n)J = Jr(0)J + E Ir(n)J 
(3.14b) n n=1 

< 2J1 lnP5 + 2 (1/2 + yln QI)5 Y dy. 

As above, the last term in (3.14b) is bounded by 25G(P, 39, Q). From (2.1), 
for P and 93> .64, G(P,39, Q) > 2/.36- 1 >4. Since IlnP ?< 1/2, one 
has IlnPP5 < 1/32 < G(P, 9, Q)/128, and so from (3.13) and (3.14), 

(3.15) 5 Ir(n)J + |s(x)J dx < 4 1 G(P, 9, Q)/30240 
n 

< (.00014)G(P, 9, Q). 

3.2.1. Bounds on r1 and si . Estimates for the remainder terms in (2.16) gen- 
erally follow a similar pattern. We start with r1 and si . For rl, apply (2.7) 
and ?3.1 to f(s) = 9n s exp(as) with a = ln P + n ln Q, and obtain 

(3.16) Irj(n)I < 2K5 1nP + nlnQJ 34 n for n = 0O11, 2. 

Analogous to (3.14), 

5 Ir(n)I < 26KI5 InP+lnQ+ylnQJ49"dy+25K51lnp 
n 

(3.17) <25K5f(I/2 +yIInQI)4 3Ydy+26K5IlnpI4 

< 25K5(42/64)/J ln3n' + 6K5/8. 
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To obtain an error bound relative to GI we use 

Lemma 3.4. One has G1 (P, 9, Q) > 2/1 ln39 > 4 when (2.6) and (2.8) are 
valid. 
Proof. We have 

G1(pg , Q) > E mPM(gA E I= 1- Qm 
(3.18) m=1 n m=1 

5 vM(.64)m 
S1 1 - 3 Qm 

Now using (2.8), 

(3.19a) I - OQm < I ln(-OQm)l I ln,91 + mlIn Ql < I In,9(l + m/4), 

and so 

(3.19b) (I - 0PQm) l> IInl 0P 4/ (4 +m 

Substituting this in (3.18) and performing the arithmetic yields the first inequal- 
ity of the lemma, and recalling that I ln,31 < 1/2 gives the second. n 

Equation (3.17) together with Lemma 3.4 and the fact that K5 < 5.005 shows 
that 

Z Jr (n)I < (5K5(21/32) + 5K5/32)G (P, 9, Q) 
(3.20) n 

< (. 000 1 2)G I (P. '9, Q). 
Turning our attention to sI (x), 

(3.21) Is, (x)I < 261ln3 + x In Q15xPx for x > 0 

and so 

(3.22) J Is,(x) I dx < 261lnPl (222/64). 

Taking the terms in (I.lb) with n = 0, 1, 2 and 3, and using (3.19) gives 

(3.23) GI (P, 9, Q) > I ln Pl72(.64 +.249 +.105 +.046) > I ln Pl2. 

Then (3.22) and (3.23) imply 

(3.24) |sI(x)ldx < G(P,9, Q)o(111116) < (.00023)GI(P,,, Q). 

Since G2(P, 9, Q) is obtained by computing GI (39, P, Q), the relative error 
bounds for the approximation of GI (PF, 9, Q) apply as well to G2 (P. 9, Q). 

3.2.2. Bounds on r3 and s3. The same approach as above leads to 

E lr3(n) < 26K5 J(y+l1)(112 +yl ln QI)4 9Y dy 
(3.25) n 

<25K5(46421 In,1 +2 3 (1 ) 
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(3.26) fIs3(x) dx < 25K5 x(1/2 + xl in QD)4Px dx < 25K (23 (In P) -2) 

We now show how the above estimates lead to bounds on the relative error in 
the values for the G functions. 

3.3. Consequences of the bounds on the Euler-Maclaurin remainder terms. Recall 
the discussion between (2.8) and (2.9). The estimates we have obtained so far 
enable us to demonstrate 

Lemma 3.5. Assume both (PF 39, Q) and (P, 3@, Q) satisfy (2.6), in which 
case the Euler-Maclaurin formula is used to obtain the G functions at (P, 30, Q). 
Assume there is no error in the evaluation of the terms I, I1, I2 and I3 (i.e., 
all the error comes from the Euler-Maclaurin remainder terms). Then the rela- 
tive error in the calculated value of G(P, 93, Q) is at most .00014, the relative 
error in the calculated values for G1 (P, 93, Q) and G2(P, 9, Q) is no larger 
than .00035, and .0005002 bounds the relative error in the computed value of 
G3(P , '9@ Q) . 

Proof. Note the basic facts that: if the relative error in an approximation v 
to some value V is T. and c is a constant, then the relative error in cv 
approximating c V is T; if the relative errors in v1, ... , vn approximating the 
positive quantities VI, ..., Vn are all bounded by T, then the relative error in 
V1 + ... +V approximating VI + **. + Jn is likewise bounded by T; and if V 
is the sum of positive quantities VI and V2, approximated by values v1 (with 
relative error T- ) and v2 (with error e2), then the relative error in v1 + v2 V 
is bounded by T- +e2/V . The estimate for G follows from (2.1a), (2.3), (2.15) 
and (3.15), and the estimate for GI is a consequence of (2.4), (2.16), (3.15), 
(3.20) and (3.24). The result for G2 then also follows, noting the last sentence 
of ?3.2.1. 

The bound for the error in G3 is a bit more complex. From (2.5), (2.16) 
and the above, a bound for the relative error, T3I, in G3(P, 3@, Q) is given by 

(3.27) Tr < .00035 + P 4'9 4Q (z Ir3(n)l + f JS3(x)I dx) G3(P, 39, Q). 

Equations (3.25) and (3.26), and the fact that I ln3I < 1/2, give 

( Sr3(n)l + f Is3(x)I dx < 25K5 ( f2 + 23 )(In 2 + 2 3 (InF) 2 
(3.28) n33 

142 322 

< .000802(ln3) +.0007(InP) 2. 

Taking the terms in (1.ld) with n = 1, 2, 3 and 4, and then using (3.12) and 
setting p = P44QI6 shows that 

4 -2 -2 --2 
(3.29a) G3(P. ', Q) > 1Op( - PQ ) = 1Op(l - P) > 10p(lnP) 

Since G3 is symmetric in P and 9, it is also true that 

I Op494 Q16(I - -2 4 4 16 - -2 
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Then (3.27), (3.28) and (3.29) give 

(3.30) T3 < .00035 + .0000802 + .00007 = .0005002 

and we have the result. n 
3.4. Bounds on the errors in I, fl I I2 and I3. We now obtain bounds on 
the contribution to the relative error in G, GI, G2 and G3 from the errors 
in I, II. I2 and I3 in the three cases 1 < A < 0, -59 < A < -1, and 
A < -59, and thereby complete the proof of Theorem 2.1. Note from (2.22) 
that I2(P, 9, Q) = Il (39, P, Q), so results for I2 follow immediately from 
those for II . 

3.4.1. Bounds when - 1 < A < 0. From formula 5.1.53 of [1], the error in Ei(z) 
is bounded by 2 x 10-7. The function Ei(z) is decreasing on (-oc, 0), hence 
on (-1, 0), IEi(A)l > ?Ei(-1)I > .21 (for the latter see, e.g., [1 or 2]). Thus, 

the error in Ei(A) < (2 x 10 /.21).21 < 1 x 10 6Ei(A) 
(3.31) for -1 < A < 0. 

Setting Rmn ={(x,y): m <x < m+ 1, n <y < n+ 1}, wealsohave 

I(P, 39, Q) = E E f f(x, y) dx dy 

(3.32) m n in 

<zzf A Pn nQmn dx dy = G(P, Y, Q) 
m n isnn 

Hence from (2.20), 

(3.33) the error in I < 1 x 10 6I < I x lO16G for -1 <A < 0. 

Bound for Il . From (2.22), (3.33) and (2.20) 

(3.34a) the error in Il < (the error in I) ln91/lnQ 

< 4 x 106 In/lnQ for-l <A<0, 

(3.34b) Il = 1/(ln P In Q) - I n9/ In Q = (1 - AeA Ei(A))/(ln P In Q). 

Since we wish to obtain a relative error bound for the error in Il, we next extract 
a lower bound for Il . From formula 8.212.4 of [2] with A = -x (which may 
be verified using the change of variable w - A + In t ) we have 

(3.35a) Ae Ei(A) = dt for A < 0, 

and thus the facts that 

(3.35b) Ae Ei(A) is a decreasing function of A for A < 0, 

(3.35c) 0 < Aet Ei(A) < I for A < 0. 

From page 250 of [1], the value at A. -1 of Ae Ei(A) = -Ae AEI (-i) is less 
than .6, so from (3.34b) and (3.35b) 

(3.36) Il > .4/(lnPlnQ) and I-' < (lnPlnQ)/.4 for -1 < A < 0, 
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and so 

the error in II < [(1 x 10t6IlnY/lnQ)I7 1][ 

< 2.5 x 10i 6e AEi(;)I < 1.5 x 106 6II for -1 < < 0. 

Our bound for the error in II will be completed using the following result. 

Lemma 3.6. Assume (2.6) and (2.8) are valid. Then 

II (P, Y, Q) < 3GI (P, Y, Q). 

Equation (3.37) and Lemma 3.6 give the estimate 

(3.38) the error in I < 4.5 x 106G1 for -l <A< 0. 

The pattern of the demonstration of (3.38) will be repeated throughout this 
section. 

Proof of Lemma 3.6. We have 11 ?Z E1 EnZ(m + l)Pm2nQmn =G1+ G. Now 
G= (1 -9) + Em>0 En pm?n Qmn < (1 _ )- I + G and 

00 00 

I nzI =Zl- 1z)'/i < (1 - z) + (1 -z)'/2 
i=2 

--(1 - z) + ( )2z for 0 < z <, 

and so 

(3.39) 1 In zJ ? (1 - z) + (1 - z)(.36/1.28) < 4(1 - z)/3 for .64 < z < 1. 

Since (2.6) is being assumed, (3.39) implies that 

(3.40) (1 - A) 1 < 41 In 3 1 '/3, 

and this together with Lemma 3.4 and the above gives 

(3.41) G(P, 3, Q) < 2G1(P, 3, Q) when (2.6) and (2.8) are valid, 

and hence I1 < 3G1 I 

Bound for I3 when -1 < A < 0. Estimating the relative error in I3 follows 
the same pattern of obtaining an upper bound for the error in I3 and a lower 
bound for the value of I3 . From (2.22) and (2.20), 

(3.42) the error in I3 < 2(the error in Ei(A))e /(ln Q) 

< (4 x 10 7e(In Q) 2I 1)3. 

We next determine a lower bound for I3, which then gives an upper limit on 
the size of I -' Again from (2.22) and (2.20), 3 

(3.43a) 13(P. Y, Q) k=)/(1nQ) and thus i) = (lnQ) /k( ), 

where 
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We will demonstrate below that 
I' 

t-t 
(3.43c) k(A) = te 2 dt 

which shows that k(A) is a positive increasing function for -Xo < A < 0. Thus, 
using, e.g., Table 5.6 on page 250 of [1], 

(3.44) k(A) > k(-1) > .1926 for - 1 < A < 0. 

Equations (3.42), (3.43) and (3.44) give 

(3.45) the error in I3 < (4 x 10 7e/.1926)I3 < 5.66 x 10 163. 
We also prove below 

Lemma 3.7. Assume (2.6) and (2.8) are valid. Then 

I3(P, Y, Q) < 12G3(P, I f, Q). 

This together with (3.45) gives the estimate 
(3.46) 

the error in I3(P, Y, Q) < 6.8 x 10 5G3(P, J, Q) for - I < A < 0. 

Proof of (3.43c). From formula 8.212.3 of [2] (which may be verified by inte- 
gration by parts and a simple change of variable), 

(3.47) 2e -Ei(A)- I1 j' A2 dt. 

Starting from (2.21) with t replaced by w, and then using the change of vari- 
able w = -t, 

(3.48) Ei(l)= f _ dw = f dt - ( )e2 dt 
00 W A t ~~~~(t - A) 

so 

(3.49) -e Ei(A) = f ( dt, 

and summing (3.47) and (3.49) gives the desired result, (3.43c). E 

Proof of Lemma 3.7. Bounding the integrand for I3 over each Rmn results in 

(3.50) I3(P, i9, Q) < G3(P, '9, Q)+G2(p, 9I, Q) 
( * ) ~~~~+ GI (P. Y, Q) + G(P, Yd, Q). 

Also, 

GI(P,, y, Q) = P(l _ p)-2+ jE mpm39nQmn 
(3.51) m n>O 

< P(1 _ p)-2 + G3(PKIY, IQ) 

and similarly 

(3.52) G(P, ,Q)<(I-P) +(I- Y) +G3(PI9,Q)- 
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Performing the same type of computation as used to obtain (3.23), 
3 

G3 (P3 '9 Q) > En n EZm(pQn)m > (.249+.210+.138)lInPI-2 
n=I m 

= .5971 lnPI 2 when (2.6) and (2.8) are valid. 

Since P > .64, one has IlnPP < .44629, and (3.53) and (3.39) with z = P 

give 

(3.54) G3(P, 9, Q) > I lnPJ '.597/.44629 > 41 lnP J '/3 > (I - P)l'. 

Interchanging P and 9 in (3.54) yields 

(3.55) G3(P,9, Q) > ( _ 9) 
and so 

(3.56) G(P,,9, Q) < 3G3(P, '9, Q). 
Also from (3.53) and (3.39) with z = P, 

(3.57) 3G3(P, 9, Q) > 1.7911InPl-2 > 1616nPl 2/9 > P/(1 _ p)2, 

and therefore 

(3.58) GI(P, 9, Q) < 4G3(P,,9, Q), 
and, interchanging P and 9 in (3.58), G2 < 4G3. Equations (3.50), (3.56) 
and (3.58) give the result. o 

3.4.2. Bounds when -59 < A < - 1 . The approach for obtaining these estimates 
follows a course similar to the above. From formula 5.1.56 of [1], the error 4 
in Ae Ei(A) is less than 2 x 10-8 for -59 < A < -1, and from Table 5.6 of 

[1] and (3.35b), Ae AEi(A) > .5963 for A < -1, hence 

(3.59) < < (2 x 10 /.5963)Ae Ei(A) < 3.4 x 10 Ei(AE). 
Therefore, from (2.20) and (3.32), 

(3.60) the error in I < 3.4 x IO 8 < 3.4 x lO 8G. 

The error in II is bounded by the error in I times ln39/ ln Q, and 

I- 
I 

< InPlIn Q/(l - ) I-1 

where 4 is the value of Ae AEi(A) at A = -59. We conservatively bound 4 

from above by the value of e-A Ei(A) at A = 1/.015 given in Table 5.2 of 
[1] (one could obtain a somewhat sharper bound, if desired, by using formula 
5.1.55 of [1] at A = -59 ), which leads to (1 - 4) > .0145, and so 

the error in Il < (3.4 x 10 I8InEA/lnQ)(lnPlnQ/.0145)1 

<2.4x 10611 <7.2x 106 G1, 

using (3.35c) and Lemma 3.6. 
The error in I3 is bounded by twice the error in I times A/ln Q, while 

I3 
I < (In Q)2/k(-59). Again using Table 5.2 of [1], .00021 is a conservative 

lower bound for k(-59), and this together with (3.60) and (3.35c) gives 

(3.62) the error in I3 < (6.8 x 10 /.00021)I3 < 3.24 x 10 4I3. 
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Lemma 3.7 is no longer adequate to obtain the desired result, but recall we 
are actually applying (3.62) to (P, 3, Q) in the context of (2.5) (with K = 

4). Thus our next step is to bound the error in pG3(P, 39, Q) in terms of 
G3(P, `9, Q) when A < -1. From (2.16) applied at the point (P ,3, Q), 
and setting G3 = G3(P, 3@, Q) and G3 = G3(P, 3 , Q), and similarly with /3 

and I3, 

the error in pG3/G3 = p(the error in I3)IG3 

(3.63) + (p 
z 

r3(n) + s3(x) dx) G3 

Now from (3.28) and (3.29), the last term in (3.63) is bounded by .0001502, 
while (2.16) and inspection of the signs of the terms in the expression for A3+B3 
in the Appendix gives 

G3 = 13 + Z r3(n) + s3 (x) dx 

(3.64a) n 

12(1 -)2 - -2(lnP)2 + positive terms. 
12(1l ) 12(ln p)2 

Again using (3.29), (3.64a) gives 

(3.64b) p3/G3 ? pG3/G3 + .0001502 + 1/60. 

Since all the terms on the right side of (2.5) are positive, pG3/G3 < 1 and 

(3.65) p!3/G3 <1 + .0001502 + 1/60 < 1.017. 

Then (3.62) at (P, 3, Q), (3.63) and (3.65) yield 

(3.66) the error in pG3/G3 < .00032951 + .0001502 < .00048. 

3.4.3. Bounds when A < -59. We first note that repeated integration by parts in 
(2.21) leads to (2.23), and to the fact that the sign of En in (2.23) is the same as 
the sign of the first omitted term, viz., n!/(n . Let eo be the value which, when 
added to the approximation for I in the right side of (2.24), gives I exactly, 
and similarly with el for Il, and e3 for I3. Then the same algebra which 
gives (2.24) shows that e0 and el have the same sign as, and are bounded by 

the magnitude of 24A 4/(ln P ln39) and -1 20. r4/[(ln P)2 ln39], respectively; 
and e3 is the sum of two terms with the same signs as, and bounded by the 

magnitudes of 720A 4/(lnPln39)2 and -120A 4/(lnPln9) 2 . The error in 

I, when A < -59, is thus bounded by 2 x 10 6/(lnPln39), while 

(3.67) I > (1 - 1/59 - 6/593 )/(lnPln39) > .983/(lnPln39). 

Thus, 

(3.68) the error in I <2.04 x 10 6I < 2.04 x 10 G. 
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Analogous calculations lead to 

(3.69a) the error in I < 1.04 x 10 5I < 3.12 x 10 5GI, 
(3.69b) the error in I3 < 6.46 x 105 I3. 

Comparing (3.69b) with (3.62), we see that (3.66) is also valid for A < -59. 

3.5. Proof of Theorem 2.1. Assume both (PF 93, Q) and (P, 35, Q) satisfy 
(2.6). The results and method of proof of Lemma 3.5, together with the bounds 
on the error in I, Il. I2 and I3 in ?3.4 demonstrate that: the relative error 
in G(P, 5, Q) is bounded by .00014204, the relative error in GI(P, 3Y, Q) 
(and G2) is bounded by .0003812, and .0008612 bounds the relative error in 
G3(P, 3 , Q). (We have retained extra digits in various constants to make it 
easier to follow the calculations of the bounds.) n 

3.6. Closing remarks. The value Aa = -59, beyond which (2.24) is used, was 
determined as that A at which rough estimates for the errors in I3 using (2.22) 
and using (2.24) were equal; the estimates being, respectively, 

(the error in I )l In Q ~ (2 x 10 8/(In P InY))I- -n Q = 2 x 20 8(In Q)-2 

and 
8402-4(In P In9)-2 840 -6(In Q)-2 

The resulting Aa is -58.958 -59. If the accuracy of the evaluation of 

eAe Ei(A) is increased, a corresponding value of 'a should be used, and corre- 
sponding error estimates can be readily obtained with the methods developed 
in ?3. 

APPENDIX. CLOSED FORM EXPRESSIONS FOR THE QUANTITIES A + B, 
A, + B1 AND A3 + B3 IN EQUATIONS (2.15), (2.16). 

A +B= 1 lnP 9 
lnQ (lnP)3 

2(1 - 9) 12(1 -39) -12(1 _)2 720(1 - 9) 

9(i P)2 +n Q 9 ln P (ln Q)2 9 ln P (ln Q) 

240(1l 9)2 240(1 _ 9)2 120(1l 9)3 

+(InQ) 
3 F 692 6 193 

-2 gD1_ )2 (1 ) -)3 (1-9)4j 

1 ln,9 ln Q (ln,9)3 
21nP 12+ nP 12(lnP)2 7201nP 

(In 2Iln Q ln (ln Q) 2 (In Q)3 

240()(n p)2 120(I{n p)3 120(I{n P) 4 
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1 (ln P)2 9l'nP InQ 30'(InQ)2 
I I 12(1 -9) 240(1 -9) 120(1 -32 240(1 _9)2 

+92 (lnQ) + 1 _In_ In nQ 

120(1 - 9)3 2(ln p)2 12(ln P)2 6(n P)3 

(In )3 In Q (In9)2 2n (In Q) 3(n Q) 

720(ln p)2 120(ln P)3 40(ln P)4 30(lnP)5' 

A 9 + 9(ln p)2 l InPIn,' 92lnPlnQ 

3 3 _12(1 -39) 240(1 9)2 +120(1 _)2 +60(1 -9)3 

9(ln Q)2 392(In Q)2 9 3(In Q) 1 

240(1 - 1)2 40(1 + 40(1 -,9 12(lnP) 

+ (In )2 3n In Q +(n Q)2 

240(ln p)2 60(ln p)3 40(ln p)4 
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